

Argus : An IoT

Based Accident Detection System

A Project Report

Submitted by

RISHABH NAMBIAR, JEET PARTE, NAYANIKA SHETTY,
AYUSH SINDHWANI, KARTIK PRAKASH

Under the Guidance of

PROF. KRISHNA SAMDANI

in fulfillment for the award of the degree of

Bachelor of Technology

in
COMPUTER ENGINEERING

At

MUKESH PATEL SCHOOL OF TECHNOLOGY
MANAGEMENT AND ENGINEERING

APRIL 2018

DECLARATION

We, Rishabh Nambiar, Jeet Parte, Nayanika Shetty, Ayush Sindhwani, Kartik Prakash, Roll No.
E004, E008, E016, E036, E054, B.Tech (Computer Engineering), VIII semester understand that
plagiarism is defined as anyone or combination of the following:

1. Uncredited verbatim copying of individual sentences, paragraphs or illustration (such as
graphs, diagrams, etc.) from any source, published or unpublished, including the
internet.

2. Un-credited improper paraphrasing of pages paragraphs (changing a few words phrases,
or rearranging the original sentence order)

3. Credited verbatim copying of a major portion of a paper (or thesis chapter) without clear
delineation of who wrote what. (Source:IEEE, The institute, Dec. 2004)

4. I have made sure that all the ideas, expressions, graphs, diagrams, etc., that are not a
result of my work, are properly credited. Long phrases or sentences that had to be used
verbatim from published literature have been clearly identified using quotation marks.

5. I affirm that no portion of my work can be considered as plagiarism and I take full
responsibility if such a complaint occurs. I understand fully well that the guide of the
seminar/ project report may not be in a position to check for the possibility of such
incidents of plagiarism in this body of work.

Signature of the Student:

Name: Rishabh Nambiar, Jeet Parte, Nayanika Shetty, Ayush Sindhwani, Kartik Prakash

Roll No.: E004, E008, E016, E036, E054

Place: Mumbai

Date

ACKNOWLEDGMENT

We, the students of ​MPSTME ​(Mumbai), are extremely grateful to our college for the

confidence bestowed in us and entrusting our project entitled “Accident Detection System”.

We give our sincere thanks to our project mentor, Prof. Krishna Samdani, to whom we are

highly indebted for his guidance and constant supervision as well as for providing necessary

information regarding the project.

We would like to thank our project co-ordinator, Prof. Shubha Puthran, for her valid inputs

and constructive criticism which helped pave the path towards the completion of our work.

Our thanks and appreciations also go to each other as colleagues in developing the project

and to people who have willingly helped us out with their abilities.

Finally, this project would not have been possible without the kind support and help of many

individuals. We would like to extend our gratitude to all of them.

TABLE OF CONTENTS

Chap.
No.

 Title Page No.

1 Introduction to Project 11

 1.1 Project Overview 12

 1.2 Hardware Specifications 13

 1.3 Software Specifications 14

2 Review of Literature 14

 2.1 Study of existing systems 14

 2.2 Outcome Of Literature Survey 23

3 Analysis and Design 25

 3.1 Proposed Architecture 25

 3.2 Design and Functioning 26

 3.3 Use Case Diagram 30

 3.4 Flow diagram of proposed system 32

 3.5 Additional Functionalities 34

 3.6 Android Application 35

4 Methods Implemented 47

 4.1 Implementation Process 47

 4.2 Calibration 51

 4.3 Detection Algorithm 54

5 Results and Discussion 50

 5.1 Sensor Values 55

 5.2 Performance Analysis 57

Chap.
No.

 Title Page No.

 5.3 Comparison Analysis 58

6 Conclusion and Future Work 62

7 References 64

List of Figures

CHAP
NO​.

FIG. NO TITLE PAGE NO.

1. INTRODUCTION

 Fig 1.1 Components and top-level overview of the workflow
for the proposed system

12

2. REVIEW OF LITERATURE

 Fig 2.1 Flowchart depicting the functioning of the system 16

 Fig 2.2 Components of the system 18

 Fig 2.3 Registration Phase Architectural Diagram 20

 Fig 2.4 Monitoring Phase Architectural Diagram 20

 Fig 2.5 Flowchart depicting control flow of the system 23

3. ANALYSIS AND DESIGN

 Fig 3.1 Overview of the proposed architecture 25

 Fig 3.2 Workflow of the proposed system 26

 Fig 3.3 Use case diagram for proposed system 30

 Fig 3.4 Flowchart overview depicting the workflow of the
system

32

 Fig 3.5 False Alarm Switch 34

 Fig 3.6 Functionalities of Android Application 36

4. METHODS IMPLEMENTED

 Fig 4.1 Connections for interfacing the Pi with the MPU 6050
sensor

47

 Fig 4.2 Terminal output showing successful connection
between Pi and sensor

48

 Fig 4.3 Terminal output showing the values read into the Pi
from the sensor

50

CHAP
NO​.

FIG. NO TITLE PAGE NO.

 Fig 4.4 Code for Calibration of MPU 6050 51

 Fig 4.5 Calibration Button 52

 Fig 4.6 Visualisations of MPU 6050 53

 Fig 4.7 Real-time data from the MPU-6050 54

5 RESULTS AND DISCUSSION

 Fig 5.1 Graph mapping power usage in Pi models 59

 Fig 5.2 BLE offers more privacy 60

 Fig 5.3 Proximity Detection in BLE 61

List of Tables

CHAPTER
NO.

TABLE
NO.

TITLE PAGE NO.

3. ANALYSIS AND DESIGN

 Table 3.1 A comparison among different low-power wireless
technologies

29

5. RESULTS AND DISCUSSION

 Table 5.1 Test Cases 57

 Table 5.2 Power Consumption of pi models 58

 Table 5.5 Comparison of wireless technologies 59

Abbreviations

Abbreviation Description

BLE Bluetooth ​® Low Energy

IoT Internet of Things

GSM Global System for Mobile communication

GPIO General-purpose input/output

ABSTRACT

 According to the analysis of road accident data in India, 17 lives on average were

claimed every hour due to road accidents in 2015. Among the vehicle categories, two-wheeler

accounted for the highest share in total road accidents with a share of 28.8% of the total. In-spite

of the laws and regulations, the number of accidents are increasing every year. Thus, we were

motivated to come up with a system that will not only detect but also provide assistance if an

accident or collision occurs. In this report, we have mainly focused on two-wheeler accidents

and the proposed system is an accident detection and response system.

The purpose of this work is to twofold: firstly, to provide a brief review on the existing

proposed accident detection systems and key-enabling technologies, and later, providing a

schematic for an ideal accident detection system. Most of the existing systems make use of a

microcontroller attached with a GSM module and an accelerometer to detect an accident and

notify the appropriate authorities. The main disadvantage of these systems is the bulkiness and

the use of a static threshold value to detect an accident. For the systems communicating with an

Android application, the main disadvantage is that the communication is done over a local

network or a cloud based communication. The proposed system, Argus instead makes use of a

Bluetooth Low Energy (BLE) to communicate with the Android application. The system uses a

Raspberry Pi Zero W, as it has built-in BLE and WiFi support and an MPU 6050 tri-axial

accelerometer sensor. This improves upon the static threshold systems and thus, provides for a

more reliable system by reducing the number of false alarms.

Keywords - Accident Detection, Internet of Things (IoT), Bluetooth Low Energy (BLE),

Machine Learning.

CHAPTER I : INTRODUCTION

A Report on Road Accidents in India 2016, published by Transport Research wing

under Ministry of Road Transport & Highways, Government of India, has revealed that four

hundred deaths take place every day on Indian roads which translates into a loss of 17 lives on

an average, every hour in our country. 1354 accidents occur every day in India which is nearly

one accident every minute. [1] Two- wheelers accounted for the highest share in total road

accidents (33.8%) in 2016 followed by cars, jeeps and taxis (23.6%) and other articulated

vehicles (21.0%), buses(7.8%), auto-rickshaws (6.5%) and other motor vehicles (2.8%). Due to

lack of protection, it is not a surprise that they also accounted for the highest proportion of

persons killed (29.4%) out of the total number of persons killed in the country during the

calendar year 2016. [5]

Ideally, when an incident occurs the rider should be provided with aid before it's too late

to take any counteractive measures. ​Efficient emergency notification, fast transport of qualified

medical personnel, correct diagnosis at the scene, stabilization of the patient, prompt transport

to the point of treatment, quality emergency room and trauma care are the factors that are

important in post-crash care. ​However, this is not the case in real life, there are a number of

variables that contribute to such a situation. In most cases, the bystanders are hesitant to take

any action. This is known as the Bystander Effect. Not having medical knowledge, the

bystander might make the situation worse. ​Even if someone dares to take the road accident

victim to the hospital, they are harassed by the police, hospital authorities and repeated visits of

the court. ​They get interrogated unnecessarily, both by the hospital authorities and by the police.

Whether it is sheer apathy that leads to inaction or fear of getting entangled in long-drawn

police and court battles, the result remains that no one comes forward to the aid of the victim

due to diffusion of responsibility. ​Sometimes there is no one around to help the rider, for

instance, if the accident has occurred at night or it takes place in some remote area. Therefore,

currently, the existing systems are inefficient to overcome the above-mentioned hindrances.

Our project provides the motorist or the rider with a sense of surety that his loved ones

will be notified if anything goes wrong and a nearby hospital or emergency center will be

informed about his/her accident giving the rider quick medical attention.

1.1 OVERVIEW OF THE PROPOSED SYSTEM

We propose a vehicle-resident accident detection and response system for two-wheelers

with the goal of minimizing the delay between the time of accident and relief for the rider by

instantly detecting an accident and dispatching emergency services. The system consists of the

system relaying with an Android application. The application is installed on a smartphone, with

a web server and ​MPU 6050 tri-axial accelerometer sensor ​ integrated with the Raspberry Pi.

Argus combines the best aspects of existing technologies and provides the following

features:

1. Accurate and Instantaneous accident detection.

2. Dispatchment of emergency services instantly.

3. Notification to family and guardians by querying their information from the

internal database.

4. Collect and provide information about accident prone areas.

 Fig 1.1 - Components and top-level overview of the workflow for the proposed system

The above diagram illustrates the components of the system and the interactions between them.

The workflow and the functioning will be further elaborated in the chapter of Analysis and

Design.

1.2 HARDWARE SPECIFICATIONS

1. 3-axis accelerometer(MPU-6050)

2. Raspberry Pi Zero W

3. Power supply

1.3 SOFTWARE SPECIFICATIONS

1. Mobile device running Android 4.1.1 and above.

2. JAVA for the android app development.

3. Python and/or JAVA for the accident detecting system running on the Pi Zero.

Refer to chapter of Analysis and Design for a detailed explanation to these specifications of the

system

CHAPTER II : REVIEW OF LITERATURE

2.1 STUDY OF EXISTING SYSTEMS

Existing System 1 : Road Traffic Accident Detection and Ambulance Management

The system presented addresses the problem of delay minimization, right from the detection of

an accident till the victim is safely handed over to the casualty. [7]

The system makes use of a SkyNav SKM53 series from Skylab M&C Co., a very high

sensitivity GPS with a tracking sensitivity of -165dBm is used. It has 22

tracking/acquisition–channel receiver which enables it to get a faster initial fix even in harsh

GPS visibility environments and off-road conditions. The system uses an Accelerometer

MMA7260QT: a low cost triple–axis accelerometer from Freescale Semiconductor with a high

sensitivity of 800mV/g is used to track the acceleration. ​A Raspberry Pi B+ with 512 MB of

RAM keeps track of the accelerometer readings. If the reading goes above a preset threshold,

the GPS coordinates are acquired over USB. An alarm is then sounded over a speaker.

The user may switch it off in case of false alarms. The dedicated in–vehicle accident

detection module automatically informs the server whenever an accident happens. The design of

the main server, which tracks the ambulances and dispatches the nearest ambulance to the

accident spot. The android application guides the ambulance driver to the accident location.

The acceleration for a hit from free fall of the accelerometer was found from various

trials to be in between 1g and 2g and for sudden brake it was found to be between 2g and 3g for

a range of speeds from 10 to 80 kilometers per hour. The authors suggest an optimum threshold

of 3g for crash detection.

The system provides an extensive ambulance management solution. The server is

responsible for keeping track of all the ambulances, identifying the accident locations,

dispatching the nearest ambulance to the accident spot and finally, monitoring the performance

of the ambulance driver. A Model–View–Controller (MVC) based Django framework is used

here. The POST request method requests the server to accept and store the coordinates enclosed

in the body of the request. A Django app (a group of related functionalities) is used for

collecting all the accident as well as ambulance locations from POST request, applying reverse

geocoding using Python’s Geopy library and storing the corresponding geographical addresses

in a form. The jurisdiction under which the accident has occurred is identified from the

geographical address. This information on jurisdiction is later used while assigning an

ambulance.

For monitoring purposes at the server, two Django views have been written, one for

displaying the location of ambulances and accidents, and another one for listing the accident

details in a serial manner. URLconf maps the URLs to the above mentioned views. The

template here is an HTML file which uses XMLHttpRequest object for AJAX (Asynchronous

Javascript and XML). XMLHttpRequest is used for asynchronous communication and it

constantly monitors the concerned port for any POST requests. When an accident occurs, the

server utilizes the Distance matrix service from Google Maps API web services to find the real

map distances and transit times of nearby ambulances to the accident location. Only ambulances

belonging to the same jurisdiction as that of the accident are considered for sorting. The

”nearest” ambulance is found by using a simple insertion sort on the transit times. The term

”nearest” is defined in terms of time required to reach the accident spot. It is to be noted that the

transit time for each ambulance suggested by Google Maps API web services depends on the

traffic conditions. Accident coordinates are then relayed to this ”nearest” ambulance. Utilizing

other functionalities of Google Maps API web services like transit time, it is possible to track

and keep a check on the performance of the ambulance driver from a single terminal preferably

at a control room.

An advantage of this system is that the web application can be used on all devices

(desktop/mobile) and that it comes with a comprehensive package of accident detection and

ambulance management. The limitation is that the system uses hardcoded threshold values

obtained from manual physical testing which is not a reliable way to classify accidents and uses

a Raspberry Pi B+ which is bulkier than other Pi's and is delicate. The power source of the

Raspberry Pi has not been mentioned.

 Fig 2.1 : Flowchart depicting the functioning of the system

Existing System 2 : Smart ​ ​Vehicle​ Accident Detection ​ ​and ​ ​Alarming ​ ​System​ ​Using​ ​a​
​Smartphone

The system presented consists of an Android based application that that detects an accidental

situation and sends emergency alert to the nearest police station and health care center. [6]

The system is implemented in five phases:

1. Bluetooth Connection, Taking Emergency Contact Number and Measurement of

Parameters

2. Speed Measurement and Pressure Value

3. Change of the Tilt Angle

4. Accident Detection

5. Alarm and Emergency Alert Message

The system makes use of a pressure sensor, GPS of the mobile device and an

accelerometer. The Bluetooth connection of the Android device is used to receive the pressure

sensor data. The application shows 3 flag bits initially set to ‘000’. The first bit corresponds to

pressure, the second bit corresponds to the tilt and the third bit corresponds to the speed.

When the pressure sensor receives the external force that exceeds the threshold (defined

as 350 in this system), the pressure bit is set to ‘1’. So, the flag number turns to ‘100’.

The tilt of the vehicle is measured using the accelerometer of the Android device. When

the tilt angle makes a bigger change (greater than equal to 2 times x-axis than previous), the

second bit is set to ‘2’. So, the flag number turns to ‘020’.

The application retrieves the speed value with the help of the GPS. When the speed

value decreases rapidly, the third bit is set to ‘3’. It actually indicates that the current speed is

less than or equal to one-third of the previous speed. So, the flag number turns to ‘003’.

In case 1, if the speed of the vehicle drops rapidly and the tilt of the vehicle is large then

it considers the situation as an accident and the flag number turns to ‘023’. In case 2, when the

values of speed and pressure cross the defined thresholds, it considers the situation as an

accident and the flag number turns to ‘103’.

Existing System 3 : Sun ​SPOT ​based ​Automatic ​Vehicular ​Accident ​Notification System

The system presented consists of the design and development of a general purpose automatic

emergency notification system for vehicles. This system, called “NOW – Notification by

Wireless Systems” uses wireless channels to dispatch necessary information to emergency

service providers for acquiring necessary help, with no requirement for human intervention. [8]

The figure below shows the three main components: (a) a set of wireless sensors

connected to a mobile unit such as a cell phone and PDA, (b) a NOW server, and (c) a database.

The sensors are planted at various strategic locations in the vehicle, with each sensor

programmed to continuously collect necessary data about its environment.

Fig 2.2 : Components of the system

The system in the paper uses Sun SPOT (Small Programmable Object Technology) and

Garmin GPS10 wireless sensors to report several environmental parameters to the mobile client.

The Sun SPOT hardware platform is a small, battery operated, wireless device running the

Squawk Java Virtual Machine (VM) without an underlying OS. This VM acts as both operating

system and software application platform. The hardware platform includes a range of built-in

sensors as well as the ability to easily interface to external devices.

The task of NOW(Notification by Wireless system) mobile client is to accumulate

various portions of the sensor data stream, and monitor the status of the vehicle. If an

abnormality is detected, such as excessive shake, high temperature combined with high intensity

light,sudden drop in speed, large angular tilt, etc., the mobile client immediately collects data,

creates a specific format and sends them as a string to the NOW server for processing. NOW

client does not report the EMS agencies about an accident. It is the job of the NOW server to do

so.

The organization and seamless availability of various environmental data from the Sun

SPOTS and GPS sensor is crucial for NOW system to work properly. This work primarily

focuses on collecting data from all the sensors, creating a string containing all the data and

sending the string wirelessly to the NOW server. The accelerometer data from Sun SPOTs has a

range of -90 to +90 degrees. After studying carefully the study indicates that a tilt of about 65

or more is sufficient enough for the vehicle to rollover.

Existing System 4 : An IoT Approach to Vehicle Accident Detection, Reporting, and

Navigation

The system presented by conveys a smart and reliable IoT system solution which instantly

notifies the PSO headquarter whenever an accident takes place and pinpoints its geographic

coordinates on the map. [9]

The system is composed of the following phases:

1. Vehicle registration and preparation

2. Passengers’ registration

3. Monitoring accidents through a web interface located in the PSO headquarter.

When an accident takes place, a shock sensor detects it. Then, an algorithm is applied to

process the sensor signal and send the geographic location along with some ancillary

information to the PSO headquarter, indicating accident occurrence. The system uses a shock

sensor for detection, a Global Positioning System (GPS) - SKM53 GPS module device to send

the exact vehicle location to server, ​Raspberry Pi open-source prototyping platform for data and

signal processing, ​NFC Reader for reading the user’s data from the mobile and Cellular IoT -

cellular 3G module to establish all kind of wireless communications from and to the server.

The below system architecture is the conceptual model that defines the structure,

behavior, and more views of our proposed system. It is divided into two phases :

1. Preparation/Registration Phase

Fig 2.3 : Registration Phase Architectural Diagram

2. Monitoring Phase

Fig 2.4 : Monitoring Phase Architectural Diagram

In registration phase, the operator registers the vehicle using its vehicle ID through a

web interface connected to the database server. As a result, the Vehicle table in the database

now comprises records pertaining to all registered vehicles. In monitoring phase, when the user

taps the NFC enabled device (mobile phone) to the IoT node, an HTTP request holding the

passenger’s ID and the vehicle’s ID, is sent through the IoT cellular network to the

application/database servers. If a passenger decides to leave the car, he must tap again the NFC

enabled device for the record to be removed from the database.

The advantages include ​minimizing injured passengers interaction, providing basic

medical information to rescue teams, recognizing exact and accurate accidents locations,

facilitating the routing process. System is robust, that is, available and serviceable and the

geographical data collected from this system could be relied upon as admissible evidence or

indicator of the road state and conditions. ​The disadvantages are that the system requires a

constant internet connection, it uses only a one sensor. It does not take into account the

possibility of false alarms.

Existing System 5 : Intelligent Accident-Detection And Ambulance-Response System

The system presents an intelligent accident-detection and ambulance-rescue system. [10] A

sensor fitted onto the vehicle unit, along with GSM and GPS modules detects accidents and

sends the accident location to a main server unit containing a database of nearby hospitals. An

ambulance dispatched from one of these hospitals carries the patient to the hospital, while

continuously monitoring their vitals and sending this data back to the concerned hospital.

During transit, traffic signals in the path of the ambulance are controlled via RF communication,

providing a clear path for the ambulance. This effectively, reduces the time for transport.

The system architecture consists of three main units that interface with a central control unit.

Throughout the system, the ARM LPC2138 is the microcontroller of choice. Thus, the system

consists of four units in total:

1. The Vehicle Unit

2. The Control Unit

3. The Ambulance Unit

4. The Traffic Junction Unit

The ​Vehicle Unit is installed on every vehicle. It consists of GSM and GPS modules, along

with the ADXL335 ​accelerometer, accident detection sensors and the ARM LPC2138

microcontroller. Upon accident detection, GPS coordinates are sent to the main server (at the

Control Unit) via GSM. Additionally, accelerometer data is used in a preemptive manner,

forewarning the driver by playing a buzzing sound if a possibility of an accident is detected.

The ​Control Unit is the central point of the system, coordinating all the other units. It consists

of a PC or dedicated mobile housing the main server and a database containing information of

hospitals. Upon receiving the accident location via the GPS & GSM module of a Vehicle Unit,

it consults the database to contact the nearest hospitals for ambulance dispatch.

During transit, the ​Ambulance Unit measures patient vitals - using the LM35 ​temperature

sensor for measuring the body temperature and an IR-based obstacle sensor for obtaining the

pulse rate. The data collected is then communicated to the hospital via a GSM module fitted to

an ARM LPC2138 microcontroller. To clear traffic obstructions, the unit is also fitted with an

RF transmitter that communicates with Traffic Junction Units installed on nearby traffic signals.

Traffic Junction Units are fitted with RF receivers ​(connected to ARM LPC2138

microcontrollers) that listen for the RF transmitters on Ambulance Units. When the two units

are within a 100m radius, the traffic signal corresponding to the incoming ambulance path is

switched to green, thus, allowing a clear passage for the vehicle.

Since the system uses GSM (Global System for Mobile Communications), there is no distance

limit or range imposed for communication between units. Also, the system integrates

ambulance-rescue and traffic-control functions along with accident detection. However, it does

not take into account the possibility of false alarm and so, is unable to handle them. More

importantly, the accident detection algorithm is not discussed neither are any details of how the

accident detection event on the Vehicle Unit is actually triggered.

Fig 2.5 : Flowchart depicting the control flow

2.2​ ​OUTCOME OF LITERATURE REVIEW

Majority of the existing systems make use of the GSM and GPS module integrated with

the microcontroller. This not only increases the bulkiness of the system but also it makes the

energy consumption of the microcontroller higher. Therefore we plan on using the GPS and

GSM modules that are present in cellular devices to obtain the same results.

Another significant observation from the literature review was that the systems only

used one sensor , most of the times it being an accelerometer. This limits the detection of the

accident to be reliant on one type of value and therefore decreases the reliability of the system.

The proposed system aims on utilising values from a triaxial accelerometer and triaxial

gyroscope coupled with a crash sensor to overcome this problem. Also, in the future work the

system will utilise supervised learning to further increase the reliability.

In the few systems that have made use of an android application , communication

between the microcontroller and the cellular device is done using either a Wi-fi or bluetooth .

Both of the mentioned methods consume a lot of power. Therefore the introduction of BLE in

the proposed system for communication helps to eradicate the problem of power consumption.

Lastly, none of the papers specified as to how the microcontroller will be powered during

function. The microcontroller in the proposed system will be powered by the vehicle battery.

CHAPTER III : ANALYSIS AND DESIGN

3.1 PROPOSED ARCHITECTURE OF ARGUS

Our system has a 3 tier architecture (see Fig 3.1) consisting of the following layers:

● Data Collection

● Data Processing

● Communication

Data collection: ​Comprises of the sensor acquiring information continuously from

environment. Majorly consists of hardware components programmed to collect and store

specific parameters.

Data processing: The stage where the collected data from the sensor is fed as input to the

accident detection algorithm. The algorithm detects whether it is an accident based on the data

collected.

Communication: ​Comprises of the information exchange between:

● System and the mobile application

● Mobile application and the database

Fig 3.1 : Overview of the architecture

3.2 DESIGN AND FUNCTIONING

Figure 3.2 below is a pictorial description of the workflow of the proposed system. This figure

gives us an overview on the working of Argus. The basic functioning of Argus contains 4 steps.

The mentioned steps are followed when an accident occurs.

Figure 3. 2 : Workflow of the proposed system

Step 1 : When the sensor values recorded by the system pass the threshold, an accident is

detected.

Step 2 : The system communicates with the Android Application on the mobile phone through

BLE.

Step 3 : The Android application sends a notification to the nearest hospital requesting

emergency services. This notification entails the location of the accident along with details like

registered vehicle number, medical history, blood group and other details given by the user

during configuration.

Step 4 : After receiving an acknowledgement from the hospital, another notification is sent to

the emergency contacts added by the user at the time of configuration with the accident location

and hospital details.

System - Raspberry Pi Zero W
Sensor - MPU-6050

A. Raspberry Pi Zero W

The Raspberry Pi Zero W is an incredibly cheap, incredibly small computer. At 65mm x

30mm, the Zero is smaller than a credit card, and it’s only 5mm thick to boot. It also

weighs just nine grams.

The Raspberry Pi Zero W extends the Pi Zero family and comes with added wireless

LAN and Bluetooth connectivity. ​It is half the size of a Model A+, with twice the utility.

● 802.11 b/g/n wireless LAN

● Bluetooth 4.1

● Bluetooth Low Energy (BLE)

● 1GHz, single-core CPU

● 512MB RAM

● Mini HDMI and USB On-The-Go ports

● Micro USB power

● HAT-compatible 40-pin header

● Composite video and reset headers

● CSI camera connector

The Pi Zero W is being used with a headless Linux distribution called ​Raspbian Stretch

Lite which is a ​minimal image based on Debian Stretch and has the bare minimum

utilities to make the data processing and communication as fast as possible.

B. MPU 6050 tri-axial accelerometer sensor

The MPU-6050™ sensors are the world’s first MotionTracking devices designed

for the low power, low cost, and high-performance requirements of smartphones, tablets

and wearable sensors.

The MPU-6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer

on the same silicon die, together with an onboard Digital Motion Processor™ (DMP™),

which processes complex 6-axis MotionFusion algorithms. The device can access

external magnetometers or other sensors through an auxiliary master I²C bus, allowing

the devices to gather a full set of sensor data without intervention from the system

processor. The MPU-6050 is being used over other similar sensors for facilitating

straightforward I2C connections with a Raspberry Pi.

C. Bluetooth Low Energy (BLE)

Table 3.1 shows a comparison among various wireless technologies. [11] In contrast to

Classic Bluetooth ​, Bluetooth Low Energy (BLE) is designed to provide significantly

lower power consumption. This allows Android apps to communicate with BLE devices

that have stricter power requirements, such as proximity sensors, heart rate monitors,

and fitness devices. Android 4.3 (API level 18) introduces built-in platform support for

Bluetooth Low Energy (BLE) in the central role and provides APIs that apps can use to

discover devices, query for services, and transmit information. [12]

Common use cases include the following:

● Transferring small amounts of data between nearby devices.

● Interacting with proximity sensors like ​Google Beacons to give users a

customized experience based on their current location.

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developers.google.com/beacons/

Table 3.1 - A comparison among different low-power wireless technologies

D. Client-Server Architecture using BLE

Using BLE, a GATT client-server communication model is setup between the Pi and the

Android application. ​The GATT profile is a general specification for sending and

receiving short pieces of data known as "attributes" over a BLE link. All current Low

Energy application profiles are based on GATT. The profile describes a use case, roles

and general behaviors based on the GATT functionality. Services are collections of

characteristics and relationships to other services that encapsulate the behavior of part of

a device. This also includes hierarchy of services, characteristics and attributes used in

the attribute server. GATT is built on top of the Attribute Protocol (ATT), which uses

GATT data to define the way that two Bluetooth Low Energy devices send and receive

standard messages.

GATT defines client and server roles. GATT procedures can be considered to be

split into three basic types: Discovery procedures, Client-initiated procedures and

Server-initiated procedures. The GATT server stores the data transported over the ATT

and accepts ATT requests, commands and confirmations from the GATT client. The

GATT server sends responses to requests and sends indications and notifications

asynchronously to the GATT client when specified events occur on the GATT server.

GATT also specifies the format of data contained on the GATT server. [13]

Low Power
Technology

Standard Data Rate Transmission
Range (in m)

Target Lifetime

Bluetooth IEEE 802.15.1 1-3 Mbs 10-50 Days- Months

Wi-Fi 802.11 b/g 11 Mbs 100 Hours

ZigBee IEEE 802.15.4 20-250 Kbs 100 6 months-2 years

BLE IEEE 802.15.1(V4) 1 Mbs 10 1-2 years

3.3 USE CASE DIAGRAM

Fig 3.2 - Use case diagram for proposed system

Actors: Motorist,Family Members, Hospital

System: IoT based accident detection and notification system

Use Cases:

● Collects continuous information- Includes sensors collecting continuous values of

acceleration and tilt.

● Detects accidents- Python code running on raspberry pi to detect accident from sensor

data.

● Sends information to mobile application- Communication via BLE to android app to

indicate occurrence of accident .

● Mobile app processes information- Prepares list of nearby emergency services and

respective emergency contacts.

● Sends alert messages

● Enters emergency contacts in mobile- User enters family and relatives contacts.

3.4 FLOWCHART

The figure 3.3(a) and the figure 3.3(b) are the flowcharts related to our system. This will

help understand the workflow and functioning better. Fig 3.3(a) is the flowchart overview

depicting configuration setup. These steps should be followed by a user to activate the system.

Fig 3.3(b) is the flowchart overview depicting the workflow of the system. This diagram takes

us through the process of detection and notification which is done by the system when an

accident occurs.

Fig 3.3(a) - Flowchart overview depicting configuration setup

Fig 3.3(b) - Flowchart overview depicting the workflow of the system

3.5 ADDITIONAL FUNCTIONALITIES

1. False Alarm Switch (User Confirmation Switch)

Accident detection systems monitor a network of sensors to determine if an accident has

occurred. Instances of high acceleration/deceleration are due to a large change in velocity over a

very short period of time. These speeds are hard to attain if a vehicle is not controlled by a

human driver, which simplifies accident detection since we can assume any instance of high

acceleration constitutes a collision involving human drivers. Since the system contacts

emergency responders—and may dispatch police/rescue teams—it is essential to identify and

suppress false alarms. The inability to accurately identify and ignore false positives could render

our accident detection system useless by wasting emergency responder resources responding to

incident reports that were not car accidents. For such situations, we have included a false alarm

switch which gives the rider a buffer time of 5 minutes after the accident has been detected. In

the stipulated time, the rider can press the switch to refuse the emergency services dispatched.

This ensures that the rider is safe and the event was a false alarm.

Fig 3.4 : False Alarm Switch

2. Calibration Button

The MPU-6050 needs to be calibrated before it is used ​in order to achieve the best possible

accuracy ​. ​In the first time installation process, the rider has to place his two wheeler straight,in

a neutral position, tap the calibrate button on the mobile app. In the next 10 seconds, the module

will adjust for it’s position and orientation on the vehicle. Calibration is a one time process; can

be performed only once after installation. ​Refer to chapter of Methods Implemented for detailed

explanation.

3.6 ANDROID APPLICATION

Given below are screenshots of the various functionalities of the android application.

Fig 3.5(a) - 3.5(j) are included in the configuration set up. Some of them include permissions.

Fig 3.5(k) is a screenshot of the message received by the emergency contact when an accident

occurs.

Fig 3.5(a) : Acquiring user details

Fig 3.5(b) : Seeking permission to access the device’s location

Fig 3.5(c) : Seeking permission to access the device’s location

Fig 3.5(d) : Home page showing recorded details of the user

Fig 3.5(e): Home page showing recorded details of the user along with the detected location

Fig 3.5(f) : ‘Add Contact’ button on the app

Fig 3.5(g) : Seeking permission to access the user’s contacts

Fig 3.5(h) : List of emergency contacts added

Fig 3.5(i) : Seeking permission to make phone calls

Fig 3.5(j) : Seeking permission to send messages

Fig 3.5(k) : Message received by emergency contact

CHAPTER IV : METHODS IMPLEMENTED

4.1 IMPLEMENTATION PROCESS

Interfacing: ​Pi and the sensor

❑ I2C -The interface between the raspberry pi zero w and the sensor

❑ I​2C is a multi-device bus used to connect low-speed peripherals to computers and

embedded systems. [14] The Raspberry Pi supports this interface on its GPIO header

and it is a reliable connection protocol.

❑ Run the i2cdetect command to detect peripheral connected to the pi at the displayed bus

address.

Connecting the sensor
To connect the sensor you need to use the GPIO pins on the Pi, the important pins are

 Pin 1 - 3.3V connect to VCC Pin 5 - SCL connect to SCL

Pin 3 - SDA connect to SDA Pin 6 - Ground connect to GND

these need to be connected as shown in the Fig 4.1 below.

Fig 4.1 - Connections for interfacing the Pi with the MPU 6050 sensor

Fig 4.2 - Terminal output showing successful I2C connection between Pi and sensor

Fig 4.2 shows that the Pi has detected the sensor with an address of 0x68 (hexadecimal), this

address is needed to interact with it.

Communication: ​The sensor and our Python code

After locating the bus address (​0x68​) of the sensor, we have written a Python program to

utilize the features of the sensor. For communicating with the sensor, we have used a Python

library called ​python-smbus. ​[15]

Python-smbus

The Python-smbus library is a Python implementation of a System Management Bus protocol.

SMBus is a subset from the I2C protocol can be used for interaction between both SMBus adapters

and I2C adapters.

Sample:

from ​ smbus ​import ​ SMBus
b ​=​ SMBus ​(​1​) ​ ​# 1 indicates /dev/i2c-1

b​.​read_byte_data ​(​0x68​)

gyro_xout ​=​ read_word_2c​(​0x43​)
gyro_yout ​=​ read_word_2c​(​0x45​)
gyro_zout ​=​ read_word_2c​(​0x47​)
accel_xout ​=​ read_word_2c​(​0x3b ​)
accel_yout ​=​ read_word_2c​(​0x3d ​)
accel_zout ​=​ read_word_2c​(​0x3f ​)

The above code sample demonstrates how the library can be used for reading data from

the sensor.

- The first line is used to import all modules from the smbus library.

- The second line is used to create an SMBus Object by passing it a physical I2C address

as a parameter. The creation of this Object will create a binding between variable ​b ​and

the physical address of the I2C connector i.e. ​ /dev/i2c-1.

- The third line is used to read sensor values from a particular address from the connection

created with the I2C bus. We invoke the ​read_byte_data() function on the SMBus

Object with the bus address as a parameter. Hence, b.read_byte_data will contain

appropriate sensor values.

- The last six lines are then used to fetch isolated values like multidimensional gyroscopic

and accelerometer data by invoking the ​read_word_2c() ​function and passing a bus

address as a parameter.

- The sensor has a number of registers which have different functionality. The registers

we are interested in for the accelerometer data are 0x3b, 0x3d, 0x3f and these hold the

raw data in 16 bit two's complement format.

By writing code in this manner, we get the output given below:

Fig 4.3 - Terminal output showing the values read into the Pi from the sensor

4.2 CALIBRATION OF MPU-6050

Sensor calibration is a method of improving sensor performance by removing structural

errors in the sensor outputs. Structural errors are differences between a sensors expected output

and its measured output, which show up consistently every time a new measurement is taken.

Calibration provides enhanced performance by improving the overall accuracy of the underlying

sensors.[16] ​The MPU-6050 needs to be calibrated before it is used ​in order to achieve the best

possible accuracy ​. The placement of the system on the two-wheeler may vary due to the design

of the two-wheeler respectively. In our case, we need to adjust the offsets in order to counteract

the error caused due to situational uncertainty.

This example(Fig 4.5) is calibirate.py for calibration of the system over 10 seconds :

Fig 4.4 : Snapshot of the code for calibration of MPU 6050

In the first time installation process, the rider has to place his two wheeler straight,in a

neutral position, tap the calibrate button on the mobile app. In the next 10 seconds, the module

will adjust for it’s position and orientation on the vehicle. Calibration is a one time process; can

be performed only once after installation.

 Fig 4.5 : Calibration Button

Fig 4.6 shows us the position of the calibration button on the android application. We

have also created visualizations of the sensor data collected to understand the orientation of the

sensor on the system. Fig 4.7a depicts the visualisation of MPU 6050 before calibration and Fig

4.7b depicts the sensor orientation after calibration.

Fig​ ​4.6a : Visualization of MPU 6050 before Calibration

Fig 4.7b : Visualisation of MPU 6050 after calibration

4.3 DETECTION ALGORITHM

Fig 4.8. Real-time data from the MPU-6050

Using the above data, we calculate the ​angular acceleration ​ w.r.t. the 3 axes.

The values for angular acceleration range between -256 and 256 after scaling.

If the vehicle is tilted rapidly ​beyond a certain value within a short time period , an accident is

detected. Currently, accidents are detected when vehicle orientation changes ​very rapidly and

when the Y-axis orientation is greater than 35 degrees or when the X-axis orientation is greater

than 60 degrees.

Navigation

The Google Maps API is being used for finding the fastest route to the accident location and

then to the nearest hospital. Google Maps APIs for Android are available via Google Play

services so your app can be location-aware, include data-rich maps, find relevant places nearby

and more. [17]

The three sub-APIs that will be used:

● Google Maps Android API

● Google Maps Geocoding API

● Google Places API for Android

CHAPTER V : RESULTS AND DISCUSSION

5.1 SENSOR VALUES

As seen in the above figure, the sensor yields two main classes of values:

1) Gyroscopic Data

A gyroscope is a device that uses Earth’s gravity to help determine orientation. Its

design consists of a freely-rotating disk called a rotor, mounted onto a spinning axis in the

center of a larger and more stable wheel. As the axis turns, the rotor remains stationary to

indicate the central gravitational pull, and thus determines orientation.

Gyroscopic information is being used with three variables:

- Gyro_​x​out

- Gyro_​y​out

- Gyro_​z​out

The ​Gyro_out ​values gives us the degrees per second rotation value.

2) Accelerometer Data

An accelerometer is an electromechanical device that is used to ​measure acceleration

and the ​force producing it. ​. When the object it’s integrated into goes from a standstill to any

velocity, the accelerometer is designed to respond to the vibrations associated with such

movement. It uses microscopic crystals that go under stress when vibrations occur, and from

that stress a voltage is generated to create a reading on any acceleration.

http://www.instrumentationtoday.com/acceleration-transducer/2011/08/
http://www.instrumentationtoday.com/force-transducers/2011/07/

Accelerometer information is being used with five variables:

- Accel_​x​out

- Accel_​y​out

- Accel_​z​out

- X ​_rotation

- Y ​_rotation

The ​Accel_out ​values provide a real time stream of the module’s raw accelerometer values in

X,Y and Z and the ​X_rotation ​or ​ Y_rotation ​ value provides rotation angle in degrees.

So, we now have the following variables that from the sensor:

- Gyro_​x​out

- Gyro_​y​out

- Gyro_​z​out
- Accel_​x​out

- Accel_​y​out

- Accel_​z​out

- X ​_rotation

- Y ​_rotation

We can query these values at any rate or set up a feed of instantaneous/real time sensor

values for further processing. We could setup a webserver API that returns values when it’s

functions are invoked. These variables can give us insights into various scenarios such as rapid

acceleration and ​deceleration ​, ​tilt of the vehicle, ​twisting motion and ​disorientation of the

vehicle and in case of a ​crash ​.

5.2 PERFORMANCE ANALYSIS

The system was tested by fitting it on an RC car and running 50 simulations using the detection

algorithm.

The car was:

● Driven through a ramp jump

● Bumped into a wall

● Flipped over

● Dropped from above

● Jerked and moved rapidly

Table 5.1 : Test Cases

Accidents were detected in all of these cases and the threshold values were fine-tuned according

to the outputs. The threshold values were decided by testing the acceleration and gyroscopic

values when the module was inside a moving vehicle. The next version of the algorithm will be

improved by adding more scenarios and new threshold values made for these scenarios.

Gyro y-out scaled Angular x-rotation Angular y-rotation Accident Detected

104 2 -36 Yes

126 45 100 Yes

209 67 20 Yes

-254 43 29 Yes

199 23 -77 Yes

128 34 26 No

191 3 10 No

5.3 COMPARISON ANALYSIS

The main disadvantages of existing systems are the bulkiness and the power consumption of the

system. Majority of the existing systems make use of the GSM and GPS module integrated with

the microcontroller which increases the bulkiness of the system but also makes the energy

consumption of the microcontroller higher. In the few systems that have made use of an android

application, communication between the microcontroller and the cellular device is done using

either a Wi-fi or bluetooth . Both of the mentioned methods consume a lot of power.

Argus overcomes the shortcomings of the existing systems as follows :

1. The system utilizes the Raspberry Pi Zero W which uses less than half the power of any

other Pi.

2. The Raspberry Pi Zero W has built in BLE (Bluetooth Low Energy); the system makes

use of BLE to communicate with the Android application. In contrast to ​Classic

Bluetooth ​, Bluetooth Low Energy (BLE) is designed to provide significantly lower

power consumption.

3. The system is robust and not as bulky as compared to other systems.

The ​Raspberry Pi is a low- ​power device, which supports being powered via USB. ​The Table #

below shows the comparison of power consumption of some models of the Raspberry Pi

measured using PowerJive USB Power Meter. The Zero uses a similar amount of power as the

A+, but both use less than half the power of any other Pi.

Table 5.2 : Power Consumption of Pi Models

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html

The graph below explains the power consumption of various models through idling, loading up

the operating system, watching video, and shooting video just for our understanding. The graph

indicates the the Zero W requires about 20 mA more than the non-wireless Zero, but that’s still

almost half what the Pi 3 needs.[18]

Fig 5.1 : Graph mapping power usage in Pi models

Now coming to BLE, the table below shows how BLE trumps classic bluetooth and WiFi as it’s

peak current draw is much lesser than the latter two.

Table 5.3 : Comparison of wireless technologies

Some other reasons to use BLE over WiFi are :

1. Privacy

BLE offers more privacy as you have to switch on the Bluetooth facility on your phone and

allow location detection. Wi-Fi technology does not necessarily ask the permission, because

there is no user intervention involved. If you want to be free of Wi-Fi, you will have to disable it

on your device.[19]

Fig 5.2 : BLE offers more privacy

2. Proximity Detection and Location Detection

Wi-Fi is designed to correctly point to the exact location by measuring access points in a device.

Bluetooth is all about proximity, and not exact location. The proximity data provided by BLE is

much more accurate than Wi-Fi. ​When it comes to micro-locating, BLE is the best option,

because Wi-Fi signals are really not very capable of penetrating through solid objects, including

walls.

Fig 5.3 : Proximity Detection in BLE

3. Deployment Costs

BLEs are less costly, self-sufficient and can run on a single battery for years, depending on

usage. No configuration is required. Wi-Fi needs router configurations, and they have to be

connected to a power source. The expense also depends on the router used and of course, the

manufacturer.

Finally we talk about the bulkiness of existing systems. The weight of GPS and GSM

modules integrated with an arduino or raspberry pi varies from 5g-240g. To eliminate the

appended weight, we use the GSM and GPS module on the mobile phone. Our system weighs

33g making it less bulky as compared to existing systems.

CHAPTER VI : CONCLUSION

In the event of an accident, prompt notification and action would minimize the human

toll of traumatic injury and death. While semi automatic emergency notification mechanisms are

available in some newer vehicles, most automobiles are not equipped with systems that provide

automatic notification of data from crash site.

The dedicated accident detection module can be directly fit to vehicles that do not have

it when manufactured. The BLE communication technology provides drastic power saving

optimizations for the Android device over other similar modules. The possibility of a false

alarm is reduced with the help of a user-confirmation switch on the Android application.

Emergency services are dispatched in real-time in case of an accident.

The proposed system not only alerts hospitals about the accident but also sends

important information like medical history, blood group etc. This allows the hospitals to take

action accordingly. Hence, the adoption of an extensive module for both road traffic accident

detection and emergency service dispatch helps save crucial time towards post traumatic

medical care and helps reduce mortality rates.

FUTURE WORK

We plan to implement a Supervised Machine Learning algorithm to make our system

more accurate in detecting incidents and classifying the same as an accident or a false alarm.

This will be done by simulating incidents on remote control cars, on which the chip will be

attached, and giving the data to the system and telling it what classifies as an accident. This will

help the system learn and make it more accurate so as to reduce the rate of false alarms. Also by

accumulating data over time we plan on notifying the driver about accident prone areas.

Our aim is to make a subsidised system for a two-wheeler with maximum

functionalities. By collaborating with government authorities and bike manufacturers, this

project could be associated with a hub. This hub will provide 24*7 customer care service and

also communication with hospital authorities and paramedics. This will provide smooth

functioning and will definitely decrease the fatality rate.

Moreover, the app will include a “Parking Mode” which when enabled will notify the

user if the vehicle is being towed or being tampered with. The scope of this project includes all

requirements gathering, planning, design, development, and implementation of the incident

detection device.

CHAPTER VII : REFERENCES

[1] ​Road Accidents in India - 2015 ​. New Delhi: Transport Research Wing, Ministry of Road
Transport & Highways, Government of India, 2016, pp. 1-5.

[2] "Low Energy: Point-to-Point | Bluetooth Technology Website", ​Bluetooth.com ​, 2017.
[Online]. Available:
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/le-p2p.

[3] "Mobile technologies GSM", ​ETSI​, 2017. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/mobile/gsm.

[4] "General-purpose input/output", EGR, 2017. [Online]. Available:
https://www.egr.msu.edu/classes/ece480/capstone/fall09/group03/AN_balachandran.pdf

[5] ​Road Accidents in India - 2016 ​. New Delhi: Transport Research Wing, Ministry of Road
Transport & Highways, Government of India, 2016, pp. 27-29.

[6] Adnan Bin Faiz, Ahmed Imteaj, Mahfuzulhoq Chowdhury, “Smart​ ​Vehicle​ Accident
Detection ​ ​and ​ ​Alarming ​ ​System​ ​Using​ ​a​ ​Smartphone”​in ​1st International Conference on
Computer & Information Engineering ​,, Rajshahi, Bangladesh 2016.

[7] Hari Sankar S, Jayadev K, Suraj B and Aparna P, “A Comprehensive Solution To Road
Traffic Accident Detection and Ambulance Management”, Department of Electronics and
Communication Engineering, NITK, Surathkal, 2016 International Conference on Advances in
Electrical, Electronic and System Engineering, 14-16 Nov 2016.

[8] D. Acharya, V. Kumar, N. Garvin, A. Greca and G. Gaddis, " ​A ​Sun ​SPOT ​based ​Automatic
​Vehicular ​Accident ​Notification System", in ​​5th ​International ​Conference ​on ​Information
Technology ​and ​Application ​in ​Biomedicine,Shenzhen ​, China, 2017.

[9] ​E. Kfoury, E. Nasr and D. Khoury, "An IoT Approach to Vehicle Accident Detection,
Reporting, and Navigation", in ​Multidisciplinary Conference on Engineering Technology
(IMCET)​, Beirut, Lebanon, 2017.

[10] ​B. Prachi, D. Kasturi and C. Priyanka, "Intelligent Accident-Detection And Ambulance-
Rescue System", ​International Journal of Scientific & Technology Research ​, vol. 3, no. 6, 2014.

[11] A. E. Boualouache, O. Nouali, S. Moussaoui and A. Derder, "A BLE-based data collection
system for IoT," ​2015 First International Conference on New Technologies of Information and
Communication (NTIC) ​, Mila, 2015, pp. 2.

[12] B. Energy, "Bluetooth Low Energy | Android Developers", ​Developer.android.com ​, 2017.
[Online]. Available: https://developer.android.com/guide/topics/connectivity/bluetooth-le.html.
[Accessed: 15- Nov- 2017].

[13] "GATT Overview | Bluetooth Technology Website", ​Bluetooth.com ​, 2017. [Online].
Available: https://www.bluetooth.com/specifications/gatt/generic-attributes-overview.

[14] "I2C - What's That? - I2C Bus", ​I2C Bus ​, 2017. [Online]. Available:
http://www.i2c-bus.org.

[15] "pysmbus 0.1 : Python Package Index", ​Pypi.python.org ​, 2017. [Online]. Available:
https://pypi.python.org/pypi/pysmbus/0.1.

[16] ​"CALIBRATION OF SENSORS | Embedded Navigation Solutions", 2017. [Online].
Available: https://www.vectornav.com/support/library/calibration

[17] "GOOGLE MAP APIs | Google Developers", ​developers.google.com ​, 2017. [Online].
Available: https://developers.google.com/maps/documentation/api-picker

[18] "POWER CONSUMPTION | Raspberry Pi Zero", ​lifehacker.com ​, 2017. [Online].
Available:https://lifehacker.com/how-much-power-the-raspberry-pi-zero-w-uses-compared-to-1
792854782

[19] "BLE v/s WiFi | Comparison of wireless technologies", hackernoon ​.com ​, 2017. [Online].
Available:https://hackernoon.com/ble-vs-wi-fi-a-comparison-of-wireless-technology-for-iot-pro
duct-development-1c7be17f379

SVKM’s NMIMS

Mukesh Patel School of Technology Management & Engineering
Department of Computer Engineering

Academic Year : ​2017-2018 Course: ​B.Tech Semester: ​VII

Project Title : Argus : An Iot based Accident Detection System

Domain : ​IoT

Mentor Name : ​PROF. KRISHNA SAMDANI

Type of Project (Internal / External (Industry / NGO / any other)): ​INTERNAL

Project Team Members

Rubrics for Synopsis Evaluation (To be filled by Mentor):

Note : If major revision, attach both synopsis (old and revised)

Note:

● Marks per week (out of 5)
● Total weeks to be considered 12 per semester

Roll No Name Mobile No Email
E004 Rishabh Nambiar 9619502085 rishabhnambiar.1.nmims@gmail.com

E008 Jeet Parte 9819921027 jeetparte.nmims@gmail.com

E016 Nayanika Shetty 9821127666 shettynayanika@gmail.com

E036 Ayush Sindhwani 7738348585 ayushsindhwani0.nmims@gmail.com

E054 Kartik Prakash 9619648414 kartikprakash.nmims@gmail.com

Proposal Report (Synopsis)
Parameter Marks

out of
Accepted

(Give Comments)
Needs Minor Revision

(Give Comments)
Needs Major

Revision
(Give Comments)

Scope and
Limitations

5 (4-5)

(2-3) (1)

Project Details

10 (8-10) (4-7) (Below 4)

Planning &
Scheduling
(Gantt Chart)

5 (4-5) (2-3) (1)

